With the recent passage of an Act proposing the elimination of Obamacare, it seems time to define why those arguments we always hear about controlling the cost for health care can seem ludicrous by analysts like myself, who spend more than half our waking hours looking at services and costs and trying to interpret why numbers flow, the way they do.

A major problem with healthcare cost and trying to understand it stems from the source for these numbers, that define how much gets paid and by whom.

Unlike buying a large furniture set, a car, a house, or a shared part of some ridiculously high vacation land investment located in the center of the Rockies, defining a cost per unit or service, service product, belonging, or time,  becomes impossible because unfortunately, all of these costs are arbitrary and pretty much made up based upon past experiences.

The cost for undergoing an MRI for example is not determined by the amount of energy used to accomplishment.  It may in part be related to the cost for the equipment needed to perform that task.  It may even be based upon some sophisticated algorithm that takes lifespan of the unit into account, along with the cost of labor needed to use it, and the number of people who use it per given time frame, with the goal of paying it off, all or 50%, within a certain number of years.  Or you may just “ballpark” that cost by comparing it with other institutions and other costs.  Its like using the smaller car to determine how much to charge for a larger car.

To analyze cost, we need to understand cost for equipment, cost for time and human resources, and the amount of effort that goes into this overall process.

But health care has these other costs we take for granted, such as the cost for that pamphlet you were given on BC Pills, or the cost for that form the office uses to document a family’s medical history, or write out a flow chart depicting the genetics path of a rare disease in the family.  Each of these processes cost money as well, in terms of the paper object and the time needed to fill it out.  Then there’s that time spent inputting if necessary, and the time needed to find and pull it again later if need be.

Cost Paths Theory

We can use any series of pathways and logic to define health care, but in terms of evaluating the cost and time spent providing care to patients, in relation to their needs and background, the electronic medical records system many companies have may do all that is needed.

The problem with interpreting EMR data is it is not put in there in any immediately understandable, logical fashion. There is a major amount of common sense used to design the plan for this database up front, but quite soon into this project, what appeared to be a fairly easy set of data points to enter turns into an avalanche of unpredictable, uncontrolled details of findings.  Making sense of those additional data, in order to produce the most common sense, logical pathway for review of these numbers, is time consuming to say the least.

After years of reviewing various systems, there are certain methods of breaking down the data into parts to define how a patient is care for, and how the services get utilized, and human resource time gets allocated, in order to make a patient satisfied with the care process, or at least left sensing he or she has completed this particular health care “assignment” for the moment.

The following is how this pathway for care, for a single person, undergoing one visit, with a history of multiple problems, is provided healthcare.


This is a rather cumbersome, overwhelming graphical illustration depicting the flow of various activities that are engaged in with health care.  It illustrates less than 20% of the data elements needed to detail all of the healthcare processes.  Yet in terms of major tables of data, for large lists of data related to the various processes and actions that occur in health care, the items illustrated in this flowchart perhaps depict about 90% of the data most important to monitoring and evaluating healthcare practices.

This figure is also a flow chart of the care process, in which a Patient goes to a care giver’s place or setting (no matter what form), has a condition or state that has to be “treated”, requiring a number of steps in the patient-office-nurse-caregiver behaviors that ensue throughout this process, and its follow ups.  A Patient’s Visit in turn requires people interactions which then are followed by by decision making, perhaps analysis, and processes then follow to provide the service that a patient originally care for–the healthcare service, or a medicine, or a serious of tests followed by treatments, or a surgery, or a referral to the right counselor or psychologist, etc. etc. etc.

Research Questions

A series of these flowcharts will be reviewed over the next few postings to detail how these processes enable you to make sense of the system and define how it operates, where the savings can be made.


This process was developed to monitor the pre-Obamacare process, and the recent processes initiated during the Obamacare period (which apparently could be quite brief).  But any subsequent changes in this care process that ensue in the upcoming future can and should be monitored to determine if change really happens.  I am taking this approach to studying the care, beginning with the null hypothesis that states:

“The transition from PPACA or “Obamacare” to a new program will have minimal, direct impact upon the patient care Visits, Events, Procedures and related activities that ensue.”

This methodology was first developed a year ago, after the transition into a fully operational PPACA plan.  The concerns at the time related to the numbers of changes in enrollment that might ensue.

Since the reenrollment process occured late in the year, up until December 2015, it was possible to develop a model for monitoring the 2014 and 2015 patients, then assess the patient lists per quarter to determine disenrollment and new enrollment/reenrollment rates, and evaluate the numbers of patients who remained in the system.

The concerns of all insurance programs at the time was that more expensive, more risky patients dissatistfied with their services would change programs.  The goal was to identify these new enrollees and monitor their practices as unique cases loads, for comparison with reenrollees, to determine if the “sickest patients” were also the most likely to switch programs.


A related second hypothesis for this first null hypothesis is as follows:

“The actions, events, procedures and related activities engaged in as part of the health care intervention program will not show the change needed to provide reason to or explain why cost related changes are noted for the before, during and after PPACA programs.”

This is based on the added assumptions that “people are people” and in accordance with neoinstitutional theory, people in one program or group will behave like other people in another program or group, when the two groups are defined by similar means.  In this case, we are comparing patients to patients, and in particular, the old medicaid patients population to the new medical patient population, the old employee health population to the new, and the same for the two matching medicare and child health plan programs.

Using specific metrics developed for utilization rates comparisons, if there are similarities between each of the years before, during and after the PPACA, then the program itself is not responsible for any change in activities and therefore, changes in overall cost for health care at the institutional (health care facility and providers) level.  This process will also be used to assess types of visits, types of inpatient stays, groups of related diseases, and differences in health care purposeful behavior based upon age group, gender, race, ethnicity, and for the first time, religion.


The lack of evidence for an actual change in care related events, namely the numbers and types of visits by patients, suggest there may be reasons outside the actual care process that are responsible for these increases in health care cost.  So how do we detect where these changes are happening and why?

The third hypothesis states that

“The rising cost for healthcare, when healthcare processes are compared across different program-service lines, is due to causes outside the healthcare system itself, such as the insurance program, or the regulations developed as to how programs are priced, by the government and the insurance agency itself.”

The latter hypothesis may not be completely reviewable, for if the insurance programs that set the cost are at fault, as a healthcare analyst working on services and quality of care, not the business and cost-defining parts of this program, I have no direct cost evidence for how the care is priced, billed and paid for by patient, companies and other financial sources.

However, as noted in the latter “Confounders” section on this page, inferences may be made as to what some probably reasons for change might exist, outside the clinical setting.


There are specific metrics I developed for this model to measure performance of the various programs, for all services, all disease types, in terms of time, utilization, healthcare providers manpower, facilities, kinds of care needed (preventive, emergent, surgical, etc.) and theoretical cost.

This last factor is the chief reason for my development of this model.  Each step in health care, in combination with a consideration of the time needed to carry out that process, and the equipment used to perform it, result in a cost that is better off standardized, and then contrasted and compared with real costs, to determine how much certain parts of the health care process are being undercharged, and other parts overcharged.

An Example

An example of its application to a fairly young patient, in need of preventive services, but only willing to engage in one third of his/her healthcare model potential, is demonstrated.  The long term impact of this single case will be show in terms of costs for each step taken by the clinician and patient, and the actual and theoretical physical and manpower costs for each.  In theory, a new healthcare program can some how modify one or more of these events in order to best improve health, thereby lowering long term health care costs.

Due to the virtual nature of costs, we may not ever be able to prevent insurance companies and the like from making up for lost revenues by reassigning income potential along other avenues within the care system.  But this process should help to define where short cuts are taken, steps are avoided or cut in half, and processes eliminated in healthcare activities, in order to improve earnings derived from the limited resources at hand.

(for this series of teaching materials currently being developed and reconstructed for teaching purposes, see this link)



Potential confounders of this process are the impact of any social health behavior changes incurred as a result of the health care program and related insurance plans changes.

For example, disenrollment or failure to reenroll will most likely result in reduced healthcare demands.  These could in theory increase the amount of appointment time available for seeing specific physicians, which in turn could increase the compliance and activities engaged in during the practitioner-patient processes for a healthcare visit.

The “emotional” consequences of insurance program change might also change human behaviors regarding preventive health care behaviors.  In the simplest of cause and effect relationships, “reactive depression” could increase non-compliance.  Increased costs for a prescription drug could alter refill times by increasing the amount of days the patient spends using lesser amounts of the medication.  Theoretical “preventive care visits” may decrease in number, even if only by one or two visits per year, depending upon personal payments required of a new program.  The production of a voluntary enrollment process for changing program or requalifying for the new program could result in a sense of “giving up” by patients, who then delay or fail to enroll in the new plan.

Each of these provide reasons for reductions in the health care events and procedures that are reviewed after enrollment has changed for an insurance program.  Enabling a program to renew enrollment, according to predefined providers lists and schedules, mimics the HMO processes that preceded the PPACA plan initiation.  This will cause patients to change care givers and even institutions, and may force decision making changes regarding whether or not to enroll in “the full plan” or just certain parts of it.

Each of these decision making processes, on behalf of the patient, can result in reduced use in terms of numbers of patients, and reduced forms of diversity and complexity of use by the patient.  That would result in a reduction in numbers of well visits with providers devoted to one specific cause, or it could require the patient see a diabetologist for his/her diabetes, incurring a greater cost per visit for that specialty care visit, resulting in non-compliance for annual visits by a patient.  For example, severely ill patient required to partake in four separate PCP plus specialist visits per year to effective treat the metabolic syndrome diagnosis (PCP, heart, kidney, endocrine) could result in annual visit costs increasing from $40 to $80 per year to $220-$300 per year.

So confounders linked to enrollment changes have to be adjusted for using several visit-procedure metrics developed for that purpose, and a series of related general and specialty health indices generated for a review of this population, extending the use of Risk Scores well beyond the typical use of Charlson and Elixhauser scoring methods.


In the next section, more details of the above broad groups noted in the charts will be provided.



If you have the time, please participate in this survey on GIS use, with a focus on GIS or Spatial Analysis use in the workplace.  This is for dissertation work on the barriers to GIS implementation by a healthcare and/or managed care system.  The following is the LINK for this survey, at Survey Monkey.   


This slideshow requires JavaScript.

I just finished a review of the research processes I am engaged in, for developing a system wide method to evaluate any and all patients, for any kind of metrics, for used in standardized analysis and reporting of patients and measures across the various EMR systems.

I defined (once again) some pretty standard measures that can be taken for a managed care EMR system (listed below). I also compared them with their status when I produced a similar page of this type a year ago [link].

What has happened between now and then is that I developed a series of algorithms that can be used to analyze and map pretty much anything you want in the EMR setting, finalized others generated by this time one year ago, and merged many of the smaller algorithms into a single data pull process, for any standard QOC research project.

My major accomplishments most recently were the development of algorithms that evaluate visits and procedures by patients who have specific diagnoses, versus all patients for a particular population, those that may be used to demonstrate changes in health care processes at the administrative level, focusing on management-cost-time-human resource relationships, and their relationship to actual and potential costs.   These were developed to demonstrate where changes are necessary, and how to evaluate the healthcare outcomes and/or costs related to these changes.

The most important research topics for the next 6 to 12 months regarding grants are: genomics and precision medicine based clinical and lab-related practices, minority health care inequality, socioeconomics and quality of care, epigenomics, rare, congenital and degenerative disease patterns, re-emerging and/or  foreign born disease introduction, the care of an aging HIV patient population with various comorbidities, substance abuse high risk populations, and age, ageing and Alzheimers/Alzheimer’s-like age related disorders.

The application of spatial analysis to many of these projects is still in its exploratory stage, but for those who employ a GIS in these projects, its application may be tested.  Of the nearly 1800 grants reviews, valid for the next 2-3 years, only one made mention of including GIS utilization in the grant submission.  None of the grants that mention “geography” actually refer to the use of any spatial analytics process or system.

The following are the data bases that can be freshly mined and pulled from claims and other raw atomic-table rich systems.

[The year I essentially completed this task during the 7/15-12/16 period is in the brackets. Those with an asterisk underwent some levels of data manipulation, format or content cleaning, reclassification, and/or development including in the algorithms.]

  1. Demographics, patient population [7m patients; name; DOB; personal ID; insurance program ID, insurance name, type, company etc.; race, ethnicity (unfortunately often race and ethnicity are entered as one column)]  [2015]
  2. Demographics, regional [census based, census block or block-group preferred; last census, most recent year for estimated counts if available] [2015 – ]
  3. *Standard Age-Gender [population pyramid level data assemblage for 1, 2, 5 and 10 year increments, for producing population pyramids of demographic features.] [2015]
  4. *Standard Race focused interpretation of patient data, including Age-Gender pyramids produced by correlation with Age-Gender dataset. [2016]
  5. *Standard Ethnicity-focused interpretaton of patient data, including Age-Gender pyramids.  [Note: Race and Ethnicity often don’t correlate well and produce aberrant groups whene used together.] [2015]
  6. *Religion [150 to 10-12] identification and reclassification routines (I have my classification system posted elsewhere in several places, but focus on major religious groups, followed by philosophically defined subgroup types of the minor groups.)  The following method most often used: Catholic, Christian (Trinity, Methodist, Episcopal, Baptist), Christian Derived (Seventh Day, Mormon, some Universalists), Judaic (Torah), Islamic (Koran, Unani, Rastafarian), Cultural (mostly the several Oriental and Indian), Natural Philosophy (Universalists, Quaker, Shaker, or similars), Modern (Practical, Agnostic, Atheistic), Post-Modern (Christian Science, Unity, Transcendentalists, Pagans), Other (Interdenominational), No Data or Unknown.  The first five are classical groups, the remaining may be grouped as Other and Unknown. [2015 – 2016]
  7. *Insurer [85] –focuses on Commercial (COM; all the commonly competitors), Medicare (MCR), Medicaid (MCD), combined MCR-MCD, CHP (optional), Metropolitan (MET: large areas may provide a cross population plan where just place of residence defined eligibility), Government (GOV; Fed., State, County, Town insurance plan), Military (MIL), Veteran’s (optional or included with Military), Homeless (HOM), Self-insured (SELF), Union or Contracted Worker Coverage (UNI), Drivers License-accident-related Coverage (DL); Inherited or Annuity-linked coverage (INH), NIOSH-WTC/OSHA/Worker’s Comp coverage (WC), Special Programs (Coal miners, RR or shipping industry etc, SPE). [2016]
  8. *Cost (esp. Virtual and True) – Virtual cost is the value of a procedure, event, visit, lab, etc. done on a patient.  Cost lists or “theoretical prices” can be exceptionally lengthy, although not as long as Procedures in general.  They may also be constructed as group costs and later as more detailed costs, by applying averages for true costs across the system, of true costs for subgroups of procedures and other items priced.  True cost is what is charged to payers (patient or insurer).  Virtual cost is an artificial value or estimate assigned to a procedure, as a guess, guestimate, or otherwise calculated value that applies to true life care situations.  Institutional Cost is a cost which is assigned to a process, step or action that uses a systems approach to the analysis; it defines a cost based upon true costs and stresses placed upon the infrastructure for a healthcare system; for example, patients are normally not changed for specific events during a visit, like the price of the educational material provided, or the documentation in writing taken by a nurse using a special reporting sheet, yet each of these count as part of a typical office visit process; in theory the price of the office visit may be divided by the numbers of these non-charged events that occur at a typical visit.  There are more than a million of these “procedures” coded in a detailed system.  The standard is to not change patients for these individual procedures because they are considered part of the service. [2016 – ]
  9. *Cost Burden –temporal reviews of people demonstrate changing forms of coverage over time.  At some periods in life, an individual may have just one health care coverage, such as COM provided by the employer, followed by MIL and then SELF and then HOM, then COM, and then GOV, MET, UNI, and finally MCRMCD.  Independent non-duplicated scores or indices are attached to each type of coverage, which can be logarithmically related to cost/risk (using base 10 or less) when compares with a cost amount developed as another Price Sheet (virtual or true). [2016 – ]
  10. *Visits [inf.] – A visit is when the patient shows up for some reason.  A visit may have a direct disease or health state linked to that visit, such as assess for possible pregnancy, where physician decides to also engage in annual visit events, such as check vitals and give seasonal shots, and then reassess if any immunizations due, or renewals of unrelated drugs required, or referral to other specialist required, or annual exams rescheduled.  Each of these procedures is linked to that one event, and will usually related to conditions and diagnoses (ICDs) linked to that visit.  Thus a visit for one condition may have several ICDs attached to it, and numerous procedure identifiers.  Several recoding and reclassification processes are currently being tested.  *An integrative (multicolumn) NLP method is being tested as part of this process.  [2016]
  11. Visit Types [9] – Visits may also be differentiated by type of visit, such as routine visit, emergent/urgent care visit, outpatient walk-in visit, inpatient hospitalization visit, referral visit, office (admin) visit, pharmacy visit, etc. [2015]
  12. *Initial Activities/notes [0.5M] – activities are events that happen at each visit, such as check in, personal med hx sheet, initial interview for why patient is visiting, patient’s two mental health opening questions, main medical concern, history, etc. etc.  These activities are often entered as discrete activity events that occur with a patient care visit.  For inpatients, there may be standard floor nurse pulse taking events for example, followed by a special services provider visit, who also registers the vital signed separately.  Activities are events that occur at discrete moments of time in patient health, and may be used to evaluate care process and sequences, relative to time passage. Several recoding and reclassification processes are currently being tested.  *NLP methods will probably become a core part of this process, and are being tested. [2016 – ]
  13. *Provider activities/notes and actions [100k] — in terms of content and nature, these are similar to the initial intake activities just described; however, differentiating the care related decisions made and actions are taken are two of the primary purposes of this documentation activity.  Another way to visualize these actions is to view the initial intake activities as documentation provided before seeing the NP or PA.  These “notes and actions” are produced by the provider and are activities that usually occur in the examination room.   Naturally, clinician’s decisions are made based upon a different set of findings and events than events related to intake processes.  There are however overlaps, such as physician providing the patient with an educational packet due to a question raised. *To evaluate these data, classes are still in the early phase of development. Ultimately NLP analyses will need to be developed as well.   [2016 – ]
  14. *Observations — a physician documents various observations, findings and conclusions as part of the healthcare process.  Observations are document for such things as vital signs, responses to orally administered survey questions (mental health evaluation), findings on a new form the patient is asked to fill out (genetic screening questions, domestic violence, chronic disease questionnaire).  These data may be evaluated for reasons related to completion, form quality and follow up to care.  *NLP methods will also become a core part of this process.  [2015 – ]
  15. *Procedures  [95k] – definition varies across systems, but these are the processes a patient goes through for specific reasons, like diagnoses, labs, xrays, assessment, scanning, recording, etc.  The renewal of a prescription may be covered as a procedure, although Rx data is typically reported as its own unique dataset and series of events.  These may be differentiated by visit types.  *Most of this has been successfully reclassified and recoded for multiple applications. [2015 – ]
  16. *Outcomes/Results [inf.] – procedure related outcomes.  Whereas procedures bears the name of the process, this data set is where the results are kept.  For example, a 20 measure blood test has Blood test under Procedures, using one or more identifiers with each identifier describing slightly different types; this entry of the blood test (where, when, etc.) has its outcomes entered differently in the Outcomes/Results dataset, so a 20 metric procedure has 20 rows of data.  As another example, the Xray can have multiple opinions documented (MD, assistant, technician, NP, residents, Manager), with one opinion per row, and for well planned systems, the final accepted diagnosis identified and so marked. These have multiple atomic, descriptive and observational/outcome datasets (1 row per patient per event).  *Due to the nature of the notes provided, NLP is required. [2015 – ] 
  17. *Visit Activity Groups [81] – Various activities can be clustered into particular forms of knowledge acquisition or physical and mental needs that apply to a each and every activity.  Some knowledge acquisition may be most relevant to long term quality of life issues, or behaviors, or  allied health histories.  An example of an activity group is nutrition, in which all the basics of nutrition are made reviewable using this additional identifier.  This dataset also applies to special services provided by individuals whose service focus on this topic, such as nutritional counseling.  There may be separate specialty groups linked to this identifier, such as unique clinical service groups of data, referred to by this column, that when visits provided even more highly detailed non-structured data about a patient’s medical state and history. *This grouper provides additional services for queries because it simplifies the filtering and mining processes. [2016 – ]
  18. *Ratios — Three ratios are defined for this group as essential metrics: Visits:Patients Ratio (VPR), Procedures:Patients ratio (PPR), Procedures:Visits Ratio (PVR).  [2016]
  19. *Risk Indices or Scores.  Population health frequencies, incidence, prevalence. Demographic counts for each. Elixhauser, Charlson, and Federal Chronic Disease Indices.  [2015-2016]
  20. *ICD Groups.  ICDs groups should be managed as ICD9 and ICD10.  If the latter is the only method use, some grouping is required for reliable evaluation processes to be developed.  For ICD9 the n=about 14,500; for ICD10 the n=about 65,000.  Historically, using ICD9, I was able to develop the following sets of groupings. These can be correlated to the ICD10. [2015 – 2016]
    • n=135
    • n=303
    • n=475
    • n=750 about
    • n=1000 (integer ICD)
    • n=1275 (ICD, E and V codes)
  21. *Special ICD groups.  Specific ICD code groups were defined for the projects.  These groups include ICDs or ICD ranges/content, and groups labels for the following common special studies topics.  These groups can be roughly defined using the population pyramid modeling processes developed.  In another presentation, the tendencies for diseases to demonstrate distinct pyramid forms in relation to age and gender may be used to better test and cluster these disease patterns.  Diabetes for example shows a progressive increase in counts in the population curve for both genders; schizophrenia demonstrates an asymmetry for Male versus Female with earlier adult age of onset; atrial fibulation demonstrates onset beginning at about 45 years of age and increases in number and frequency as the population ages, whereas diabetes cases reduce due to directly and indirectly-linked causes for mortality.   For each of these Special groups, the ICDs, V codes and some E codes may be included in the algorithm developed. [2016 – ]
    • Infectious Diseases (lower ICD)
    • STDs and HIV
    • HIV, related complications and comorbidities
    • Fractures
    • Cancers, by metastases patterns and organ system
    • Old Age ICDs
    • Prenatal-Postpartum ICDs
    • Foreign Born in-migrating diseases (incl. vectored, zoonotic)
    • Country or Region specific in-migrating behavioral, physical and socicultural ICDs (culturally-bound vs. culturally-linked)
    • Genomic diseases, all, or by system
    • Neurological Genomic or Developmental
    • The Mental Health Early Onset case ICDs
    • Early Onset High Fatality Diseases and ICDs
    • Broad Range Genetic, Genomic and Congenital/ Development Diseases
    • Chronic or Long term QOL Diseases
    • Old Age Onset diseases
  22. *Spatial Modeling Lat-Long Datasets, point data.  i) Patients: developed for Zip Code (3- and 5-digit), Census Block or Block group (tracts are not used), and based upon need, per patient address (top security).  Used to develop spatial modeling analyses and presentations.  ii) Facilities;  iii) regions, towns, boroughs, etc.; iv) allied health or other healthcare/managed care associates locations;  v) complementary alternative health care provider data (if possible)
  23. *Spatial Modeling Areal Analysis datasets, areal definitions and data points.  Regional boundaries and areal centroids (borough, county, township, town, village).  Functional, healthcare service related areas (Theissen polygons); equal area polygons.
  24. *Spatial Modeling, Transformative Areal Models and Grids (political and economic grid mapping).  Traditional square grids and hexagonal grids(?).  Several modeling protocols for each.
  25. *Spatial Modeling Auxiliary data.  Additional data gathered and developed for transforming spatial model into useful modeling or predictive tool, spatial analysis tool, interventions driven programming tool.


I developed algorithms for a number of these datasets in this new system a year or more ago, about a third of them perhaps.

Another third have been perfected a little bit more this past year, each tested several dozen times and integrated with all of my normal data pulls for internal review of validity of reliability.  Some of these I even added new columns to, after producing a more helpful reclass tool.  The reason for these reclassification systems was to take full advantage of their research potentials and applicability to grant writing, prototype development, the investigation of newly discovered relationship.

The final third of database development projects are ongoing, and have been active and producing over the past year or two, but are obviously in need of more development so they may be integrated with the other tools I developed.

The details of the projects developed for the upcoming months are briefly defined on another of my blog sites.  These versions of two or three of the previously defined projects are a little more defined, and solid in their methodology and constructs, that similar ones posted one year ago.

There are also a few new topics added due to my review of the 1800 grants available this, posted about two weeks ago.  I determined what the hot topics are for this upcoming year, and from that chose the grants that were not due in the near future and which emphasized research approaches and topics related to the demographics I am dealing with.

Over the past year, my work has focused on producing as many new algorithms as possible, reclassification and analytic routines, and testing the algorithms, math and their outcomes.  Now that these formulas heave been pretty much validated (with the exception of the cost-burden analysis method, which is still in it final stages of multiple use QA review), they will be tested in several grant-funded project (assuming grants are awarded), as well as several other very fitting applications of their use.  These other items are also detailed on the other page.


What I consider the first book on medical geography, in terms of: i) a complete study of cultures, their differences, and distribution around the world, ii) medical and health related needs and natural offerings for disease prevention and cure, and iii) all of these in terms of time and place in the world.  This actual book may be reviewed at, or my page on it and the history of its author.

When I go through my site, and review its responses by the public (the world!) over the past few years, I cannot help but be amazed at the number of visitors interested in these subjects, as a learning experience.  One of the things I have tried to remain humble too for the past two decades is how lucky I have been to tap into an unresearched or under-researched part of the history of medicine, that part pertaining to the culture and philosophy of disease, and how these vary around the world.

One of the more important lessons I had in all of this came from the religious scholars who speak of science as another philosophy, or way of explaining things.  The philosophy of science is dualistic, in that it takes what is seen and define the other form or opposition to that thing and abides by the premise that these opposites exist.  Since energy produces light for example, there is also this entity called darkness, when in fact, the reality of this scenario is that the absence of light is darkness, and darkness therefore is not a physical thing that must exist.

Now, it is important to note that this theory is found elsewhere in the writings–it is not my own.  But it relates to the religious name for scientific beliefs called “scientism.”   Scientism is the philosophical paradigm upon which all beliefs are based, in order that the best explanation of all that is found and seen can be provided.  Since scientific observations guide scientists further, or in a new direction, that move then either reconfirms or cancels the ideology upon which beliefs are based.

On some of the earliest pages I wrote on this site about 8 years ago (for example, see my phenomenology approach), I summarized my teachings and discoveries of how and why medical beliefs change.  Why is it that physicians were so convinced that they were right that they had to practically kill patients through the blood letting process?  Why were such injurious processes as blistering, baunscheidtismus, the prescribing of purgatives, caustics, and emetics so important.

All of these “mistakes” disappeared once more proof as to a better way to treat such patients came to be.  In my transformation of common belief , I argue that medicine survived mostly because practice and error were consistent, and that corrections always had to be made, the treatments had to be improved or made to be better.  With success, we saw patients survive a health crisis, or become better, and/or live longer.  With success, we dropped the older practices and substitute the new, until a still better belief and method complying with that belief can be discovered (see my anthopological cultural rendering of this recurring human behavior pattern).

Knowledge is the way to learn medicine, and my work on this site is to find knowledge not promoted much in the years before me.  Unexpectedly, I found a lot of new concepts not yet taught in medicine, and was able to break the barriers that exist between the reading of historical beliefs and philosophies and relating them to the common themes that different cultures based their health practices upon.  Many of the items posted on this page have never been posted or written before by previous medical historians, much less historic medical geographers.


Dr. Carl Friedrich Canstatt, whose book Handbuch der medicinischen Klinik, published in 1847 [in German], is the first book to provide a taxonomy of diseases that is based mostly upon environmental theories, including exposure to climate, chemicals, other parts of the human ecological settings.  (I cover this book on this page.)

With that all said and done, I can report the following: several themes, topics and subjects continue to demonstrate popularity in the medical philosophy and history, and medical geography and spatial epidemiology fields.

The first is very popular to academia and the popular culture movements pertaining to alternative medicine, mind-body philosophy, and other cultural renderings or histories of health care and healing.  The second is very popular due to the advancing fields and professions of medical geography, spatial epidemiology and research, and the rapidly growing GIS-guided research and professions, in the environment and health.

This first table is of the top 50 countries visiting this site and reviewing my information over the past 4 years.  Some color coding is provided so the reader can follow the country across all four years.  As expected, the United States is the top country to follow my posting on the value of spatial epidemiology, GIS and medical history.  The United Kingdom, being the inventor perhaps, if not the most important influencer of spatial epidemiology and medical geography, is now second in terms of following this site, but is closely followed by its largest “sibling” Canada.

Canada is perhaps one of the leading countries in the world for use of unique spatial methods to evaluate the environment and the human impacted built-in urban environment.  The U.K. is the creator of many of the ideologies we base our practices of medical geography upon.

The U.S. by the way is close to the U.K. in terms of its contributions to the fields of spatial epidemiology and medical geography.  Were it not for the stubbornness of the early 20th century post-eugenics era scientists, and their pro-socialist sociologists and Marxists in the U.S transforming geography into two practices–environmental science and the controversial sociological alternative culture–the U.S. may well have excelled over the U.K. these past 75 years in terms of Geography field contributions.   Our diminishment of “geography” from the pre-college programs and many of the colleges and university further diminished the roles of the U.S. in advancing the field of Geography; countering this were the U.S. contributions to Environmental Science.


Top 75 countries visiting my blog, per year from 2013-2016 (max number as of 2016 was 198)

Take a few minutes to let the variety of countries visiting this site set in.  Medicine is a very hot topic worldwide.  Many of the topics I cover are multicultural and crosscultural.  Medicine itself is one of the most important topics for individual and group survival around the world.  The skill of medical geography and mapping disease and health is equally important, at the worldwide level.

The unfortunate nature of the U.S. healthcare system is that it is making us fall far behind developing countries in how we utilize GIS and spatial health to the best of our potentials and ability.  The fragmented nature of the U.S. healthcare system makes it difficult and almost impossible to produce a nationwide healthcare program, like other countries are now doing.  That may be one of the benefits of socialized medicine in the decades to come, assuming our current HIT level remains stable and productive, and that is not hindered by political changes now happening around the world.  An overtake of major forces, governments, ideologies, can have some drastic impacts upon the advances now being made in medicine, the internet, world information exchange, the iCloud, the use of medical and healthcare data to the best of our ability, in terms of fighting the health changes that may ensue in upcoming years.


E. N. Pavlovsky, perhaps the most important medical geographer and disease ecologist in Russian medical history, specializing (inventor of) in modern parasitology and the biology and ecology of vectored and zoonotic diseases (my introduction page on this).

This detailed review of the history of medical geography that I do is focused on the U.S. often, but is not exclusive of other countries, some more important than the U.S. is some parts of the history of this profession.  The Russian medical geographers of the nineteenth century are not covered in any anglican writings in this field, which is a shame, for their theories in economics and ecology are in some ways better than those of western society.

In the following photography, the leader of Middle Eastern medicine up until the 1990s, Hakim Mohammed Said, made it a point that the ancient practices remain alive, practiced, researched, and documented.  Globalization of health care can effectively makes many of these alternative practices extinct.  The practice Said was most attached to was Unaniism, and its resemblances in theory to Hahnemann’s teachings of homeopathy.  The political events taking place in the Middle East make some of the Iranian and Iraqian forms of practices extinct from common knowledge.  Right now, parts of this medical philosophy and belief system are travelling the globe, and will soon be the next form of alternative/complementary medicine most of allopathy will be having to deal with, along with the health conditions attached to this philosophy of health (more on this at the end).


Hakim Mohammed Said (

Back to the history of medicine in the Americas, when the U.S. established itself following the Revolutionary War, U.S. scholars set the stage to become important contributors to the field of Geography during the first 125-150 years of the existence of this new profession in US culture and academia.  Many of the teachings back then were quire different from those of the Western European leaders.

Most of the teachings that appear in the medical literature at the time are all accurate environmental renderings of disease patterns, and are directly applicable to the sudden re-emergence of interest in new diseases migrating into the U.S. from afar, and to the return of the old diseases that once were considered eliminated.  To best understand the older disease patterns, we need to look at how they existed and were dealt with during their peak ages of existence.  Contemporary medicine has not yet taken on that task of relearning its historical background and knowledge.


A very early project of mine, on the diffusion of allopathic and non-allopathic health professions in the U.S. from 1750 to 1860, based upon the establishment of medical schools and their geographic and political “spheres of influence.”  (See my pages on this, Part 1 and Part 2,)

For examples of applications, review the maps I posted, many of which are the most important to medical geography history.  Some of them are basic maps that we immediately understand.  Others are maps that we wish we had continued to work on, so as to perfect this skills by today’s day and age, for now we are more than a century behind in this knowledge based, and back to beginner’s level for the most part in trying to implement the same exploratory processes.

The U.S. experienced the first large area, large distance diseases to travel expansive waterways between continents, and to demonstrate quite clearly that there were latitude and longitude differences regarding disease behaviors and distribution.


Yellow Fever Insert of Alexander Keith Johnston, 1856 (See

The yellow fever outbreaks of the post-Revolutionary War years into the early 19th century were at first puzzling (“The Extraordinary Disease at Martha’s Vineyard”), but later better understand and gave rise to the development of the quarantine policies for incoming ships.

The cholera had stricken Western Europe a number of times, and European geographers were able to develop some very important hypothesis regarding spatial disease spread behaviors and patterns.  British epidemiologists developed the models claiming disease spread patterns were in part due to populations,  but perhaps more so due to living style, the distribution of poverty, and the practice of poor sanitation.  United States geographers developed the models relating disease to urban density and what may now be called hierarchical diffusion patterns for disease transmission, an ideology re-invented in the 1960s by a U.S Economics Geographer.


Top sites people visited

Notice, the 1890 Census Medical Geography has surpassed the page with my personal information, an important change in the pattern of use of this site.

More important perhaps is the fact that geography and my review of geography as a historical medical geographer are now contributing greatly to fields other than healthcare, epidemiology and medicine.

Native American, Indigenous culture and philosophy, and Indigenous health are teachings that stand out on my site.  The immediate popularity of the fairly thorough work I did (from 1990-1994 about), on Chicle and the Chewing Gum industry is probably due to the large numbers of classes in the U.S. with Hispanic students and teachers wanting to find important topics that portray the contributions Hispanic cultures made to the history of the U.S.  The late 1800s map of Mexico’s disease patterns and the regionalism of disease patterns is an important example of how we developed our “deterministic” philosophies during the late 19th and early 20th century (the eugenics period).

A map of the diseases of Mexico, from a World Geography set ca. 1897.  The history, meaning and anthropological, cultural interpretations of these diseases and their distributions is extensively reviewed at  my page on this map’s history.

When I began teaching in 1988, in fact, my goal was to point out the firsts in American and U.S. culture.  This included the first uses of Native American philosophy for medicine, the first use of a U.S. plant for the more modern 19th and 20th centuries western European pharmacy, the first time we reviewed natural causes for diseases outside the human body, aside from temperament and inheritance.

I was also fortunate enough to uncover evidence for the first Jewish MD physician and doctor in the mid-Atlantic (New Amsterdam/New York) part of the North America–Dr. Isaac Marks.  Researching him as part of the Revolutionary War doctor’s manuscript (Dr. Cornelius Osborn) that I re-discovered in 1981, opened the door to understanding and demonstrating colonial interpretation of the American Indian philosophies, and their willing to engage in new versions of older theories like alchemy in the New World, as the predecessors to understanding human emotions, spirit, emotions, and psychology (Harvard’s 1650 Charles Starkey‘s practice of this and its parallels with the Dutch (and thus New Netherlands) preacher and professor of medicine/mindbody effects–Hermann Boerhaave).

The first medical geographers

Disease mapping is also a major topic of interest now to medical history and geography students.  The first disease maps came from the United States (although I wouldn’t be surprise if somewhere we do find some European mapper producing something like this in a manuscript collection).  The local New York City patron of medicine in the field, Dr. Samuel Mitchell, published this country’s first article(s) on “medical geography” and may  in fact be the first to popularize, if not both publish and popularize, this term.

The U.S. doctor next in line for the U.S.’s fame in this field is Valentine Seaman, of NYC, who produced the first epidemiology map. using it to explain the recurring seasonal yellow fever outbreaks in lower Manhattan.  No one was in the famed city of Philadelphia was like Seaman or Mitchell, including the famous Benjamin Rush.

Benjamin Rush, however, did introduce to us other important “discoveries” and additions to the field of medicine, thereby distinguishing it completely from the medicine practiced in Great Britain.  He produce the precursor to the idea that as land use patterns change with time, as will lifestyles and disease patterns.  Rush didn’t take it as far as health and diseases, but managed to at least defined the impacts of land use changes upon the occupations and lifestyles of people surviving in different regions, ranging from farming communities, to villages and small town and larger cities.


Benjamin Rush and his important article proposing a sequent occupance type model is available for review on this page.

With this, Rush provided the medical geography field the first example of a use of an ideology that would later be reborn again by midwestern U.S., helping scholars imagine and publish the sequent occupancy idea.

Although never related directly to just health and disease patterns, sequent occupancy was the preliminary idea that was born again later under the term epidemiological transition.


How the contamination of Cumberland city water happened by the seepage of waste from barkyard privies and city sewage overflow into the Potamac river, as revealed by Dr. William Wyett Wiley with the quickly handrawn map (right) subsequently published in a medical journal. [From one of my pages on this.]

For geographers, the sequence of change was popularized in 1890s (Derwent Whittlesey [professional obituary]), but then forgotten. The temporal-spatial disease diffusion process was explained and popularized with models published by geographer Gerald F. Pyle in the 1960s, and promoted further by his 1979 book “Applied Medical Geography”.


In 1832, Cholera entered northern North American via Canada and the St. Lawrence Seaway, impacting inland cities like Quebec and then almost immediately migrating southward to New York City by way of heavily travelled water routes.  This introduction of cholera by way of major heavily populated places was first published by NY Medical Geographer Lewis Beck (Report on Cholera in Canada and New York, 1832).  This hierarchical diffusion path was duplicated 150 years later when Ebola was introduced to North America for the first time about a decade ago, this time by airplane.   

For epidemiologists, epidemiological transition is linked mostly, or only to scholar Abdel Omran, conceived in the late 1950s and 1960s, as part of the Columbia University school of Public Health, but not popularized until 1971 (see my page on his study as it relates to Native American epidemiological transition).  Several attempts have been made to modify the Epidemiological Transition theory, to better fit the changes over time and new observations being made, but the sequent occupance model remains a more valuable and precise interpretation of changes in disease patterns over time and space.

The first map of disease by Valentine Seaman, Yellow Fever outbreak, NYC, ca. 1798/ mapped by its 1803 publication date; part of the first Medical Charts series ever produced, used for defining insurance payments, by Sydney H. Carter’s Insurance Company in NYC; three examples of the first disease maps published in the 1890 U.S. Census (area highlighted was reviewed for one of my studies posted on this site).

The ways in which medical geography can be directly related to epidemiological transition theory, through the sequent occupancy model, are defined in my thesis (posted by itself and the theory discussed briefly on several pages at this site).


The present state of utilizing GIS for surveillance by the U.S. managed care systems.

We remain at this level, although I am inclined to prepare for changes in 2017.  Once evidence is published for use of GIS in ways other than “descriptive”, the medical profession will be heading into the next generation of GIS use, as an analytic tool.


Famous medical geographers

There are several medical geography topics that are going to become increasingly important in 2017.  



Islamic culture medicine has to be further investigated, with an emphasis on Unani and non-Unani medical practices.  We are provided more information about the practice of Unani medicine through the Muslim India internet sites, than through Iranian, Iraqian sites–the two philosophies do demonstrate some important subjective, cultural differences (which I must cover later).



The impacts of Islamic practices (Unani and non-Unani, Sharia Law practiced) in the Middle East,  on people migrating to the U.S. is going to have a profound financial and cultural impact on the U.S. health care system.  Some legal impacts may be experienced and become problematic as well.  The three most important issues uncovered to date are: infibulation (female circumcision) history and practice and its practice on children under 18 years of age, and especially under 9 and under 5 years of age.  The younger the patient residing in the U.S., the more likely she will have received this practice while living in the U.S., by a U.S. MD or non-MD practitioner, including the use of methods practiced in some very “crude” ways (“broken bottle process”).



The Obamacare PPACA plan may change or even go away, but the need to demonstrate cost improvements in healthcare will not.  If the current PPACA is changed, disenrollment and increases costs may drive up epidemiological problems once again; without the development of spatial GIS methods in the American healthcare systems, we will certainly experience more unpredictable disease outbreaks, in lower income areas and in the form of in-migrated disease patterns.



The BD2K (Big Data to Knowledge) plan now being initiated in health care–making available, testing, sharing and employing these larger datasets to develop more comprehensive population health research programs–will cause radical changes in the system, regardless of the program that exists.  Insurance programs, if they continue practicing unengaged irresponsible, non-forward thinking healthcare practices, will ultimately lose their trustworthiness and integrity.  The application of GIS to healthcare is one of the most time-saving methods for analyzing BD2K data thoroughly and completely, reporting the outcomes frequently.


The numerous “genomic plans” developed to improve genome centered healthcare practices must be performed along with an equal number of “epigenomic” programs, designed to focus on the environment, neighborhood, people and health.  This can only be performed using GIS or some form of Spatial analysis routines.



Spatial analysis provides more accurate ways to analyze healthcare statistics.  The hexagonal grid model I developed is 27% more accurate than traditional grid models.  It produces smoother more realistic 3D modeling results, and is the visualization tool that must be utilized by the public medial geography sector to produce more accurate results, more rapidly than through the use of traditional modelling tools already in place.




For a report on the value of this website, go to :

To understand how diseases come into this country, especially epidemic disease patterns brought about due to natural history and ecological events, it helps to view their historical routes and their most recent routes.

The historical routes of disease transmission are well documented by the various medical maps published, a number of the most important of which are posted throughout this site devoted to medical history and historic medical geography.

I produced maps of the recent migration patterns of disease in this country about ten years ago, and have most of them posted in various sites, ranging from blog pages, to several of my old and new Youtube domains, to ScoopIt! and  even Facebook on occasion.

The best way to find my way of interpreting and mapping diseases, both past and present. one need only type in my last name and whatever topi he/she is interested in.  Now, I am not sure why this is the case, but Google has been very supporting of my work and pages, which may be because I like to stay away from heavy ads as much as possible.

In view of the recent penetration of this country by several important diseases migrating in, I have a few examples to demonstrate here of diseases that are foreign born.  remember, there are common, very obvious routes of travel for people and disease.  So they do tend to penetrate the US border by way of both coasts, and the Mexican border on up the Mississippi River valley.  On occasion you seen diseases that favor the Pacific Rim route for penetration, or the east coast of California from the Caribbean, or the northern border where homeland security is concerned mostly with human borne diseases, not the tropical diseases, like Yellow Fever and a few from Africa, which successfully came into the US first by way of the Great Lakes inland routes and then the northern boundaries.

The following are posted because they are interesting diseases that I produced videos of, to then compare them to each other and come up with new discoveries, some previously unexplored spatial behaviors for international disease migrations.

Chiclero’s Ulcer, developed by harvesting practices engaged on the Yucatan Peninsula in Mexico.


Chagas.  The cluster can probably be linked to migrations by way of a missions program or non-profit group devoted to this public health cocnern


Bejel, from the Middle East.




Pinta and its various subgroups, with zoom-ins or close \-ups


Takayasu’s Disease, with zoom in to NY tried years ago for the first time, a disease from Hawaii and Japan (cited as Takosubo my mistake)


Yellow Fever


Monkey Pox



From my page “The James Way” of Raising Turkeys at


In view of the days ahead, I felt it to be a great idea to remind us of the stories we get told as kids about our history.  One of these tales is that of the Pilgrims and the Indians and how “the first Thanksgiving” was spent.

Well, it wasn’t the first Thanksgiving as we know it today.  But it may have been the first month when the cold was so terrible, that the first settlers didn’t think they would make it until spring.  We are often taught that was not the case, since they somehow managed to have a fall time feast with “their newest neighbors” (or was it the other way in the original story?)

A changing of generations: the old barn and the new from a late 19th C to mid 20th C Turkey farm in Dutchess County, NY

Whatever the case, the tale of turkeys and “Thanks be to giving them to us” seems to have meaning in the U.S., oops. . . back then it was still an unnamed part of the New World, surrounding the hamlet of Plymouth.

A second generation farm on the same property, built ca. 1940-50

Several years ago I had the fortune of visiting one of the region’s most successful, big turkey farms, now gone to pieces and about to loose all of its relics from long ago, when turkeys were raised in densely packed buildings, grown from freshly laid eggs into two year old fowls, treated constantly for the risk of new contagions and vermin, thanks to the great researchers at the nearby State Farm College setting (Cornell).

Each section of these long barns held the fowl at different stages in life; the entire series of these slides, representing the different stages in growth, appear on the page links that appear on this posting.

The James Way farm was a barn that could be constructed in pieces.  The invention of this new form of building construction enabled barns to be raised almost as fast as those of the Amish, but with a lot less people and neighbors.

Jamesway airvents in the ceilings

This series of pictures I took of this unique piece of farming history in Dutchess County is on a page I produced years back.

The end and middle of sections where the poults were raised, at varying ages.  They were moved from the heat lamps near the hatchery to the caged areas at the opposite end of the floor over a few weeks.  At this opposing end, they were fed a recipe laced with Fort Orange Turkey Starter, inspected regular by a licensed vet (Dr. Crum); this was to  prevent bacterial outbreaks on their skin and in their respiratory passages. 

This interesting tale of this barn and its sequel, a cement block version of it that ultimately led to the first turkey manufactories, can be found at   

As the character of farms and their content changed, so too did their cost, safety, industrialization and methods of use.  This transition or change in a business over time, and its relation to changes in land use patterns and natural resource requirements, is termed SEQUENT OCCUPANCY, a study of land use developed in the 1890s by geographers. 

In the long run, there is not much difference in the way we raised turkeys about a century ago, and how they are raised today, except for the technology–at least in the big business setting.

A product perfected by researchers at Cornell University, for preventing avian diseases from erupting that killed off entire flocks

And yes, I am holding back on saying anything for the moment about some of the huge megabusinesses responsible for cloning and bioengineering farm crops–both plants and animals.

Poultry Farm

Few of us known that the first animal patent was secured by a NY Ivy League school around 1850-1855.  It was for a cow that produced huge volumes of milk.  The agreement made between the US Patent Office and the university was that the university was allowed to hold the patent, but it had to allow the “product” to remain in the public domain for all of its subsequent years.


It is Veteran’s Day!

What important Public Health issues should this remind us of as public health, spatial epidemiology specialists?

War has always led to advancements in medicine.  The Crimean War between England and Russia led to the use of large hospitals, the discovery of contamination and infection on recuperating soldiers’ lives, and the need to better patient care; due to the work of the famous Florence Nightingale, the nursing profession and school were born.  The Civil War  or War of the Union in the United States is where physicians first demonstrated the power of the antiseptic and the value of clean surgical practices; this war led to many amputations, and with time resulted in a need for a new profession–the prosthetic limb manufactories.  It also demonstrated the value of ether in performing operations.

The Spanish-American way is where we developed the first large scale floating hospitals, with a complete hospital on board in terms of staff and supplies.  World War I unfortunately was the first war where chemical warfare became common, and where nutritional deficits and appropriate foot apparel often seemed to be the determinants.  During World War II, these ventures continued, and due to the development of the single winged airplane, the first studies of high altitude impacts on pilots were test, at research programs set up on Long Island, in order to document better ways for pilots to survive high elevation manuveurs, tolerating the cold and lesser oxygen pressures.

The Korean War gave us the MASH units.  The Vietnam War resulted in the exposure of soldiers to some of the least health environments, due to natural pathogens and toxins, and due to the chemicals, insecticides, pesticides and defoliating agents used indiscriminately across the battlegrounds that soldiers traveled through.

The most recent wars have exposed soldier to innumerable potential pathogens and health impacting materials.  From the Vietnam War on, the surgical practices of the military were forced to deal with high technology weapons and exposure to the unknown.  At first, short term impacts on health were well documented.  Now, as the decades have passed, the long term impacts of exposure to natural and manmade elements during the war are beginning to demonstrate another cycle in unhealthy effects upon the human body.  The long term effects of Liver Fluke disease recently reached the news.

Liver fluke disease has local or native forms and one highly important Asian borne form.  Whether the new cases documented for Chinese Liver Fluke are of some new local origin, or due to decades old exposure histories remains to be verified beyond any doubt.  The International spread of disease like Liver Fluke, due to human migration or business (military) related travel should be of concern to the U.S., which has for more than a century worked effectively at keeping foreign born infectious and vectored diseases out of this country, for the most part.  With the recent outbreaks of West Nile, Chikungunya, Yellow Fever, Ebola, and most recently Zika, the likely return of 19th century disease to this country seems inevitable.

For my listing of potentially intruding foreign diseases of concern to the near future in United States Public Health and Epidemiological history, see .

A number of years ago I had the chance to, for the first time, generate maps of international diseases and how they were dispersing in the United States from about 2000 to 2010.  To achieve this goal, I drew up a series of US maps demonstrating where the diseases from particular parts of the world are derived.  As an example, the following is of Japan specific diseases, recognized by mapping the ICDs for these diseases and where their patients reside, based upon the 70M-110M patients EMRs that were evaluated years ago.


I also produced the following interesting review of disease from Africa . . .




Middle and South America . . .

Middle and South America 

Asia in general . . .


Australia . . .


Etcetera, etcetera, etcetera.

The follow videos were used for teaching.  They were developed to show the value of using GIS/RS (remote Sensing) techniques to evaluate spatial data.  Standard algorithms were applied to this 3D model I generated of the US disease patterns, to demonstrate the value of regular, squared and cuboidal spatial data analyses.

This video was used to demonstrate how to evaluate a disease pattern up close (around the great lakes this time), to determine possible diffusion routes for the illness, or its biological, ecology and/or zoonotic causes.

The following is applied to an actual geomorphogenically defined disease region, a disease dependent upon densely population area with a certain climate pattern, and a certain rock and soil type that assists the organism in its survival.

For each of the above videos I present here (of the hundreds I developed), many of these were very brief, but are the first depictions of this kind for the country, for so many people (1/4-1/3 the nation).

Veterans-related Spatial Surveillance

Fifty years ago, United States soldiers serving in the Vietnam war exposed themselves to a variety of pathogens native to the local waterways.  Since the seventies, discussions on the long term effects of this war, besides the physical and psychological impacts of the war itself, focused on the long term effects of agent orange, exposure to local toxic chemicals, exposure to the waterborne schistosomes.

(for which, see )

Live fluke is one of the oriental water born diseases that has experienced its peaks and lulls in U.S. epidemiological history.  The disease ecology of liver flukes in fact entails a number of diseases, not just this particular fluke now possibly impacting some Vietnam war vets.

The Farmer’s Liver Fluke natural in the U.S. impacts mostly the eastern half of the United States.

Another liver fluke  is associated with domestic animals, the Feline Liver Fluke, which again demonstrates east coast dominance and lower latitude (high temperature) west coast dominance.


The Liver Fluke that the Vets are now talking about in the U.S. may be something they captured decades ago.  But another possibility is the infection of these people due to their dietary patterns.  There is growing concern about the infection of people in the US by poorly processed foreign foods.  In particular, sushi is linked to a number of organism related diseases where the source is food that has not been fully processed.

Still, regardless of the source, veterans or in-migrating animals and people, the Chinese Liver Fluke has to be the most important growing concern for up and coming liver fluke outbreaks in the U.S.

The following illustrates the distribution of this disease in the US, up until 2012.

Notice the peak in the Seattle area, one near the Great Lakes, and two along the Mississippi River valley.  The latter two are situated along a common route traveled by in-migrating Asiatic populations over the years.

The cause for re-emergence of the Chinese Liver Fluke version of this disease pattern in the U.S. should be our primary concern.  Understanding its method of penetrating the U.S. might provide us with insights into how the other diseases from China and South Asia may penetrate this country.

The skills of analyzing a disease like Chinese Liver Fluke sets the stage for how spatial epidemiologists need to review other internationally dispersed zoonomic and microbial disease patterns.

There are also a variety of tick, fly and chigger born diseases that aren’t covered here, that may break out.  Several forms of meningitis and encephalitis may become epidemic or endemic in nature in the U.S., should the borders not be managed and secured properly.  Livestock diseases like Texas Fever and Bovine Tuberculosis, diseases eradicated in the nineteenth century, could very well return due to the lack of sophisticated monitoring systems established in the most important healthcare places–the managed care business settings.

In essence, this problem is in its infancy right now.  World Health Organization already failed several times these past years with Ebola, Chikungunya and Zika.  As the other opportunistic diseases arrive in the country, we will begin to demonstrate a reversal of the epidemiological transition that took place in the U.S. between 1820 and present.

For every century of growth that occurred in epidemiological transition, only a decade is required to reverse all of the accomplishments that were made.  This is well demonstrated by the last decade’s worth of changes in public health, disease ecology and epidemiological complexity.

Of all the countries out there, the U.S. has the most to lose in terms of public health security during the next few years.


Michael Baughman

From the article:

“DANVILLE, Calif. (AP) — Mike Baughman considered himself one of the lucky ones, returning from Vietnam without any major injuries or psychological scars. But after falling ill nearly a half-century later, he found out he did not escape the war after all. . . .

” . . . The U.S. government acknowledges that liver flukes, endemic in the steamy jungles of Vietnam, are likely killing some former soldiers. Ralph Erickson, who heads post-deployment health services at the Department of Veterans Affairs, said about 700 cholangiocarcinoma patients have passed through the agency’s medical system in the past 15 years.”

From “Still fighting: Vietnam vets seek help for rare cancer” by
ROBIN McDOWELL and MARGIE MASON, Associated Press.

For more on this growing crisis in U.S. Public Health, see the related article, posted this VETERAN’S DAY, at


Above: Articles by Thomas Jefferson and Congress about National Security, and two early European articles on the early discussions of warfare practices and the use of chemical tactics

Due to the recent 15th year recognition of 911 and recognition the WTC tragedy, a number of people queried into my work in this field, ultimately convincing me to initiate a new study of the survivors of this incident.

This study, initiated four to six weeks ago, focuses on the long term exposure effects and chronic disease patterns generated by exposure to various physical and chemical substances at this disaster site more than 15 years ago.   It uses spatial analysis and small area modeling of the entire ICD system, to compare documented victims in the registry with their neighbors with suspected causality due to proximity, unknown exposure history, but fully documented medical history in their EMR.

These images, above and below, come from my Bioterrorism Pinterest site at

At my Bioterrorism site, I thoroughly review several centuries of military history as it relates to chemical and biological warfare events.  It is the result of a fairly extensive project I have been engaged in on and off since the late 1970s, when I began teaching “Terrorism” classes to Emergency Medicine students, as an expert in neurotoxicology. (I worked in a neurochemistry lab for several years, specializing in axon and synapse chemistry and metabolism.)

These pictures and their discussions cover everything you can imagine, plus more.  In my usual way, I focus on the obvious such as natural toxins, infectious disease warfare, and other substances, events and lessons related to chemical warfare and bioweapons.

Below: United States history and chemical warfare, and the birth of these unique chemical industries in the US, ca. 1880-1910.  The first bioterrorism events in the US–carried out by the Rajneeshi Puram utopian group located in Antelope, Oregon. An International team engaged in discussions on this topic. Victims of one of the recent bioterrorism events and forced relocation.  The development of a policy on how to manage these patients developed by physicians and published in the medical journal Pediatrics.